Providing a broad insight into the potential applications of carbon nanotubes with metals and ceramic materials as a matrix, this book focuses on the preparation and the microstructural, physical, and mechanical characterizations of such novel nanocomposites. It features information on current synthesis and structure-property-relationships of metals and ceramics reinforced with CNT, organizing the vast array of surveys scattered throughout the literature in a single monograph. With its laboratory protocols and data tables this is invaluable reading for research workers and academics, as well as for applied scientists and industry personnel.

The excellent mechanical properties of carbon nanotubes (CNTs), CNT and CNT reinforced polymer composite are becoming more and more pervasive in engineering applications, especially in energy absorbing and damping materials. Therefore, the underlying mechanism of the intriguing mechanical properties of CNT arrays and CNT reinforced composites is an essential and fundamental science for the potential applications of CNT related materials. It is fundamental and critical to investigate the mechanical properties of CNTs first,
since the intrinsic properties and collective behavior of CNTs play an important role in the mechanical response of composite. The buckling behavior of vertically aligned carbon nanotubes (VACNT) was investigated. By taking van der Waals interactions into account, both experiments and modeling results confirm that VACNTs buckle in the bottom region with a high mode buckling, following wave damping effect. Then, the compressive behavior of VACNTs was quantified by strain energy density function. The effects of CNT structure/morphology, including diameter, cross section area, moment of inertia, defect degree and density, on mechanical properties were statistically investigated and compared with cellular materials, showing significant influence on determining the mechanical properties of VACNTs. The focus of CNT polymer composites is on the application-oriented viscoelastic properties. The static viscoelastic characterization was conducted by creep and stress relaxation tests with stress/strain variation and quantified by nonlinear power-law model. The dynamic properties were characterized by dynamic mechanical analysis (DMA) with frequency variation. And CNTs show significant enhancement in elastic response and considerable influence on viscous response. In addition, the temperature effects were investigated and composites show better thermal stability. By using timetemperature superposition (TTS) and Williams–Landel–Ferry (WLF) fitting, the prediction scale of viscoelastic behavior in time/frequency range can be significant enlarged. The viscoelastic responses are complicated by the intrinsic anisotropy of CNTs, so it is also essential to study their anisotropic properties. The compressive and viscoelastic characterization were performed on longitudinal, transverse and random composites and compared with PDMS. The results confirm the exceptional reinforcement of CNTs in longitudinal composites, which have lateral support from polymer matrix. And the increased damping effects of composites can be explained by the interfacial sliding and the energy dissipation between nanotubes and polymer matrix. Furthermore, the fatigue tests of CNT polymer composites were performed to investigate mechanical robustness and long-term stability. From the stress-number of cycles (S-N) data in cyclic DMA tests, CNTs improved the fatigue life of composites considerably, especially in high-cycle fatigue strength, caused by the hindering of crack propagation from CNTs, the interface debonding and the CNT reinforcement effects. Also, the microscopy images of fracture surfaces indicate different fatigue resistance and different fracture/crack mechanism between longitudinal and transverse composites. All-carbon composites are carbon materials reinforced with other carbon materials, typically nanostructures such as carbon nanofibers or nanotubes. There are a large number of all-carbon materials, many of which demonstrate unique and useful sets of properties. Combining and hybridising different carbon materials and nanomaterials together also opens up a number of possibilities to fine-tune the materials for desirable combinations of these properties. All-carbon Composites and Hybrids provides a broad overview of these materials including discussions of synthesis, characterisation and the applications of a wide variety of all-carbon composite materials. This will be a useful volume for any researchers interested in carbon and nanotechnology. Carbon Nanotubes and Graphene is a timely second edition of the original Science and Technology of Carbon Nanotubes. Updated to include expanded coverage of the preparation, purification, structural characterization, and common application areas of single- and multi-walled CNT structures, this work compares, contrasts, and, where appropriate, unitizes CNT to graphene. This much expanded second edition reference supports knowledge discovery, production of impactful carbon research, encourages transition between research fields, and aids the formation of emergent applications. New chapters encompass recent developments in the theoretical treatments of electronic and vibrational structures, and magnetic, optical, and electrical solid-state properties, providing a vital base to research. Current and potential applications of both materials, including the prospect for large-scale synthesis of graphene, biological structures, and flexible electronics, are also critically discussed. Updated discussion of properties, structure, and morphology of biological and flexible electronic applications aids fundamental knowledge discovery Innovative parallel focus on nanotubes and graphene enables you to learn from the successes and failures of, respectively, mature and emergent partner research disciplines High-quality figures and tables on physical and mathematical applications expertly
Carbon nanotubes are rolled up graphene sheets with a quasi-one-dimensional structure of nanometer-scale diameter. In these last twenty years, carbon nanotubes have attracted much attention from physicists, chemists, material scientists, and electronic device engineers, because of their excellent structural, electronic, optical, chemical and mechanical properties. More recently, demand for innovative industrial applications of carbon nanotubes is increasing. This book covers recent research topics regarding syntheses techniques of carbon nanotubes and nanotube-based composites, and their applications. The chapters in this book will be helpful to many students, engineers and researchers working in the field of carbon nanotubes.

Size, Shape, and Synthesis Key to “Tuning” Properties The discovery and rapid evolution of carbon nanotubes have led to a vastly improved understanding of nanotechnology, as well as dozens of possible applications for nanomaterials of different shapes and sizes ranging from composites to biology, medicine, energy, transportation, and electronic devices. Nanotubes and Nanofibers offers an overview of structure–property relationships, synthesis and purification, and potential applications of carbon nanotubes and fibers, including whiskers, cones, nanobelts, and nanowires. Using research on carbon nanotubes as a foundation to further developments, this book discusses methods for growing and synthesizing amorphous and nanocrystalline graphitic carbon structures and inorganic nanomaterials, including wet chemical synthesis, chemical vapor deposition (CVD), arc discharge, and others. It also describes boron nitride and metal chalcogenide nanotubes in detail and reviews the unique properties and methods for characterizing and producing single-crystalline semiconducting and functional-oxide nanowires. The chapters also identify challenges involving the controlled growth, processing, and assembly of organic and inorganic nanostructures that must be addressed before large-scale applications can be implemented. Edited by award-winning professor and researcher Dr. Yury Gogotsi, Nanotubes and Nanofibers offers a well-rounded perspective on the advances leading to improved nanomaterial properties for a range of new devices and applications including electronic devices, structural composites, hydrogen and gas storage, electrodes in electrochemical energy-storage systems, sorbents, and filters.

During the past few years, scientists have achieved significant successes in nanoscience and technology. Nanotechnology is a branch of science that deals with fine structures and materials with very small dimensions – less than 100 nm. The composite science and technology have also benefited from nanotechnology. This book collects new developments about diamond and carbon composites and nanocomposites and their use in manufacturing technology. Carbon nanotubes (CNT) are being used extensively as reinforcing materials at nanoscale in developing new nanocomposites, because of their excellent mechanical properties. Incorporating CNTs in polymer matrices can potentially enhance the stiffness and strength of composites significantly when compared to those reinforced with conventional carbon fibers. However, retaining these outstanding properties at macro-scale poses a considerable challenge. To discover the ways for achieving this entails extensive experimental and simulation studies. Molecular dynamics (MD) simulations have been proved to be an excellent approach in characterizing nanocomposites. Nevertheless, MD is limited to nanoscale due to its extra-ordinary computational costs, which promote the development and usage of alternate approaches for characterizing CNT reinforced composites at microscale. In this research one of these alternative approaches, the continuum mechanics approach using the finite element method, is employed to estimate the effective modulus of CNT reinforced composites and was successfully validated using other analytical (rule of mixtures) and MD methods. Large-scale models were developed, simulating CNTs using pipe elements for the first time. Results from these models reveal that there exists a limiting value for the length of long CNT, for effective load transfer. It was also observed that composites reinforced with long CNTs yield very high effective modulus compared to those with short CNTs. These results are found to be in good agreement with those obtained using MD and multi-scale constitutive modeling approaches.

Although ordinary Portland cement (OPC) is one of the most widely used construction materials in the world, its relatively weak tensile strength and fracture resistance limit wider structure applications. Carbon nanotubes (CNTs), having been identified as one of the
strongest and stiffest materials on earth, are attractive candidates as nano-filaments in reinforcing OPC. The investigation of CNT reinforced OPC composites (CNT-OPC) is at a relatively early stage, and very limited research regarding the effectiveness of CNTs in enhancing the tensile strength or fracture toughness of OPC are available in open literature. The published results on testing of the CNT reinforcing effect often show large variations and sometimes contradict each other. Therefore, there is a significant need for further studies in this area to improve understanding of the reinforcing behaviour of CNTs in cement matrix, including dispersion of CNTs and the effect of CNT on OPC paste in terms of hydration, microstructure, tensile strength and fracture properties. This study builds on the earlier research on CNT reinforcement of the mechanical properties of OPC paste in Duan’s group in the Department of Civil Engineering at Monash University. Specifically, the objectives of this study are (1) development of high mechanical performance CNT reinforced OPC paste by considering the effect of dispersion and concentration of CNTs within OPC matrix, and (2) investigation of the reinforcing mechanisms of CNTs in cement matrix by estimating the post-peak softening behaviour of CNT-OPC paste and the interfacial bond strength between CNTs and cement matrix. In order to develop high performance CNT reinforced OPC paste, the dispersion and concentration of CNTs were studied. The combinations of chemical functionalisation (COOH functional groups on CNT surface), a polycarboxylate-based cement compatible superplasticiser (PC), and sufficient ultrasonication energy have been found essential to achieving homogeneous dispersion of CNTs in cement paste. An effective PC to CNT mass ratio of 8 is recommended to ensure effective dispersion of CNTs, at the same time maintaining satisfactory workability of CNT-OPC paste. Moreover, a CNT dosage-independent optimal ultrasonication energy for achieving mechanically superior CNT-OPC paste was found to be 50 J/ml per unit CNTs-to-suspensions weight ratio. The incorporation of CNTs (of 0.075 wt.% of cement) substantially enhanced the mechanical properties of plain cement. For example, Young’s modulus was improved by 31.5%, flexural strength by 49.9%, and fracture energy by 62.6%. Regarding the reinforcing mechanisms of CNTs within cement paste, the post-peak softening characteristics of CNT-OPC paste were investigated. It was found that the linear post-peak softening characteristics, including initial fracture energy and cohesive tensile strength of plain OPC paste (estimated using size effect tests with the assistance of cohesive crack-based finite element simulation), can be significantly improved by incorporating CNTs. Particularly, the enhancement of cohesive tensile strength may be attributed to the filling of CNTs in the nano-sized colloidal pores and bridging micro-sized capillary pores. On the other hand, the comparable brittleness numbers obtained for CNT-OPC and OPC pastes indicate the minor contribution of CNTs to the ductility of plain OPC paste. Based on cohesive tensile strength, the range of effective interfacial bond strength between CNTs and cement matrix was estimated to be from 9.5 to 24.5 MPa based on a micromechanics-based crack bridging stress-crack separation model for CNT reinforced composites developed in Duan’s group. This result suggests that the introduction of COOH functional group may enhance the interfacial bond property between CNTs and cement matrix, thereby resulting in improved mechanical performances. This project will provide key information to assist other researchers and practitioners to better understand and apply the novel CNT-cement composite with improved mechanical properties to the design of structures and codification. High thermal conductivity of carbon nanotubes has motivated us to study and understand the thermal mechanisms in nanocomposites. Though several theoretical models predict a high thermal conductivity for CNT reinforced polymer composites, the experimental validation are not so encouraging. A finite element model of MWNT reinforced nanocomposite is developed based on continuum mechanics approach. The finite element model is a representative volume element (RVE) with single MWNT inclusion. The inclusion is modeled based on the continuum model of MWNT as effective solid fiber [22]. The interface resistance between the nanotube and the matrix material is modeled using thermal contact elements. The finite element analysis was carried out keeping volume fraction of MWNT fibers as constant and varying three important parameters which influences the effective thermal conductivity. Analysis with varying volume fractions of CNT fibers was also carried out to study the influence of volume fraction. The results obtained
were in agreeable range with the theoretical calculations made based on the work of Bagchi and Nomura [22]. The effective thermal conductivity of MWNT reinforced nanocomposites with MWNTs of high aspect ratios showed gradual increase in conductivity with an increase in length while it showed a drastic decrease in effective thermal conductivity with an increase in the diameter of the MWNT inclusion. The finite element analysis showed that the interface resistance between the nanotube and the matrix material does not affect effective thermal conductivity noticeably which is contradictory with few theoretical models which attribute interface resistance for lower than expected effective thermal conductivity. The analysis predicts linear increase of effective thermal conductivity with an increase in volume fraction of the MWNT fibers in matrix material; this is also in accordance with the theoretical model. The above analysis also validates the use of finite element approach based on continuum mechanics in studying the overall behavior of the nanocomposites. This one year effort demonstrated that cohesive zone model can be adapted within a multi-scale approach to study the fracture behavior of carbon-nanotube (CNT) based polymer based composites. Some of the fundamental cohesive zone parameters like traction and displacement were computed using molecular dynamics and the results used in a non-linear finite element method to study the fracture characteristics of the CNT based composites. A new type of cohesive zone finite element was developed, and the element showed both numerical stability and accuracy. It was clearly shown using the developed method that unless the interface strength and fracture characteristics are properly controlled, the full capability of CNTs in composites could not be exploited. For example, simple carbon nano-fibers (a few micron in diameter) will outperform ONT based composites, if the former has better interface thermo-mechanical properties than the latter. Controlling atomic scale interfaces is however much more difficult and follow up work showed novel neutron bombardment and selective defect creation can achieve this. The present work paved the way for breakthroughs in processing. Composites are a class of material, which receives much attention not only because it is on the cutting edge of active material research fields due to appearance of many new types of composites, e.g., nanocomposites and bio-medical composites, but also because there are a great deal of promises for their potential applications in various industries ranging from aerospace to construction due to their various outstanding properties. This book mainly deals with fabrication and property characterization of various composites by focusing on the following topics: functional and structural nanocomposites, numerical and theoretical modeling of various damages in long fiber reinforced composites and textile composites, design, processing and manufacturing technologies and their effects on mechanical properties of composites, characterization of mechanical and physical properties of various composites, and metal and ceramic matrix composites. This book has been divided into five sections to cover the above contents. Ceramic nanocomposites have been found to have improved hardness, strength, toughness and creep resistance compared to conventional ceramic matrix composites. Ceramic nanocomposites reviews the structure and properties of these nanocomposites as well as manufacturing and applications. Part one looks at the properties of different ceramic nanocomposites, including thermal shock resistance, flame retardancy, magnetic and optical properties as well as failure mechanisms. Part two deals with the different types of ceramic nanocomposites, including the use of ceramic particles in metal matrix composites, carbon nanotube-reinforced glass-ceramic matrix composites, high temperature superconducting ceramic nanocomposites and ceramic particle nanofluids. Part three details the processing of nanocomposites, including the mechanochemical synthesis of metallic-ceramic composite powders, sintering of ultrafine and nanosized ceramic and metallic particles and the surface treatment of carbon nanotubes using plasma technology. Part four explores the applications of ceramic nanocomposites in such areas as energy production and the biomedical field. With its distinguished editors and international team of expert contributors, Ceramic nanocomposites is a technical guide for professionals requiring knowledge of ceramic nanocomposites, and will also offer a deeper understanding of the subject for researchers and engineers within any field dealing with these materials. Reviews the structure and properties of ceramic nanocomposites as well as their manufacturing and applications. Examines properties of different
ceramic nanocomposites, as well as failure mechanisms Details the processing of nanocomposites and explores the applications of ceramic nanocomposites in areas such as energy production and the biomedical fieldComposites and nanocomposites are used in cases where long durability and strength of components are required; i.e., where high stress levels, erosion processes and multiphase environments are present, including the parts under collision and impact, the parts under rotating motion and erosion (like excavation drills in oil and gas wells). The first volume of this book aims to provide a guide for fabrication of new nanocomposites mainly based on carbon nanotubes and graphene. The main topics of this volume are: Application of Nano-powders for Formation of Metal Matrix of Composites, Conjugated Polymer Nanocomposites, Biopolymer Nanocomposites, Dental Nanocomposites, Graphene-based Nanocomposites for Electrochemical Energy Storage, Polymer/Filler Composites for Optical Diffuse Reflectors, Synthesis and Applications of LDH-Based Nanocomposites, Rubber–CNT Nanocomposites, Nanocomposite Fibers with Carbon Nanotubes, Fabrications of Graphene Based Nanocomposites for Electrochemical Sensing of Drug Molecules, Recent Advances in Graphene Metal Oxide Based Nanocomposites. Our primary focus in this to apply the concept of cohesive zone models to link atomistic effect within a continuum based multi-scale model. We have used this approach to consider the effect of interfaces in carbon nanotubes on the properties of CNT based polymer matrix composites. In this chapter, glass and glass–ceramic matrix composites containing carbon nanotubes (CNTs) are discussed with an emphasis on their production, properties, microstructures and applications. Composite manufacturing routes require both CNT/matrix powder preparation techniques and their densification by suitable sintering processes. Physical, mechanical, functional and technological properties of the composites are evaluated, including density, hardness, elastic modulus, fracture strength and toughness, electrical and thermal conductivity, wear and friction resistance, and thermal shock, cycling and ageing resistance. Microstructural features are typically characterized by X-ray diffraction and scanning and transmission electron microscopy. Based on the characteristics obtained, potential applications of the composites are considered, together with a discussion of the unresolved manufacturing challenges and desirable, but still unattained, properties. "Nanomaterials" is a special topic of recent research and is a milestone of nanoscience and nanotechnology. Nanoscale materials are a series of substances/compounds, in which at least one dimension has smaller size than 100 nm. Nanomaterials have a broad area of development, which is growing rapidly day by day. Their impact on commercial applications as well as on the respective academia and education is huge. The basic points of this book can be divided into synthesis of nanomaterials and their applications. For example, special mention is about metal–oxide nanostructures, nanocomposites, and polymeric nanomaterials. Also, synthesis, characterizations, various processes, fabrications and some promising applications are also developed and analyzed. This book shows the recent advances of the applications of carbon nanotubes (CNTs), in particular, the polymer functionalized carbon nanotubes. It also includes a comprehensive description of carbon nanotubes' preparation, properties, and characterization. Therefore, we have attempted to provide detailed information about the polymer–carbon nanotube composites. With regard to the unique structure and properties of carbon nanotubes, a series of important findings have been reported. The unique properties of carbon nanotubes, including thermal, mechanical, and electrical properties, after polymer functionalization have been documented in detail. This book comprises 18 chapters. The chapters include different applications of polymer functionalization CNTs, e.g. photovoltaic, biomedical, drug delivery, gene delivery, stem cell therapy, thermal therapy, biological detection and imaging, electroanalytical, energy, supercapacitor, and gas sensor applications. Chemically-modified carbon nanotubes (CNTs) exhibit a wide range of physical and chemical properties which makes them an attractive starting material for the preparation of super-strong and highly-conductive fibres and films. Much information is available across the primary literature, making it difficult to obtain an overall picture of the state-of-the-art. This volume brings together some of the leading researchers in the field from across the globe to present the potential these materials have, not only in developing and characterising novel materials but also the devices which can be
fabricated from them. Topics featured in the book include Raman characterisation, industrial polymer materials, actuators and sensors and polymer reinforcement, with chapters prepared by highly-cited authors from across the globe. A valuable handbook for any academic or industrial laboratory, this book will appeal to newcomers to the field and established researchers alike. This volume presents the characterization methods involved with carbon nanotubes and carbon nanotube-based composites, with a more detailed look at computational mechanics approaches, namely the finite element method. Special emphasis is placed on studies that consider the extent to which imperfections in the structure of the nanomaterials affect their mechanical properties. These defects may include random distribution of fibers in the composite structure, as well as atom vacancies, perturbation and doping in the structure of individual carbon nanotubes. Providing a broad insight into the potential applications of carbon nanotubes with metals and ceramic materials as a matrix, this book focuses on the preparation and the microstructural, physical, and mechanical characterizations of such novel nanocomposites. It features information on current synthesis and structure-property-relationships of metals and ceramics reinforced with CNT, organizing the vast array of surveys scattered throughout the literature in a single monograph. With its laboratory protocols and data tables this is invaluable reading for research workers and academics, as well as for applied scientists and industry personnel. Carbon nanotubes (CNTs) with extraordinary mechanical, thermal and electrical properties have been considered one of the most promising filler candidates to manufacture electrically conductive polymer composites with improved mechanical properties. CNT modified thermoset polymer nanocomposites have recently opened up a new perception for researchers and thus become of significance in terms of creating new composite application areas. The understanding of the interphase region with respect to structure-property relationships are important to synthesizing nano-modified thermoset resins as matrix materials for reinforced composites. This book presents in detail the experimental results on processing, rheological and curing behavior of CNT modified vinyl ester resin suspensions and establishes a link between thermoset resin chemistry and the electrical, thermal and mechanical properties of the resulting nanocomposites in a concise manner. This book also provides an insight into how to prepare and use CNT modified vinyl ester suspensions as matrix materials for manufacture of fiber reinforced composite structures by using vacuum infusion (VI) and resin transfer molding (RTM) processes. This discovery of carbon nanotubes (CNT) three decades ago ushered in the technological era of nanotechnology. Among the most widely studied areas of CNT research is their use as structural reinforcements in composites. This book describes the development of CNT reinforced metal matrix composites (CNT–MMC) over the last two decades. The field of CNT–MMC is abundant in fundamental science, rich in engineering challenges and innovations and ripe for technological maturation and commercialization. The authors have sought to present the current state of the art in CNT–MMC technology from their synthesis to their myriad potential end-use applications. Specifically, topics explored include: • Advantages, limitations, and evolution of processing techniques used to synthesize and fabricate CNT–MMC • Emphasizes dispersion techniques of CNTs in metallic systems, a key challenge to the successful and widespread implementation of CNT–MMC. Methods for quantification and improved control of CNT distributions are presented • Methods for quantification and improved control of CNT distributions are presented • Characterization techniques uniquely suited for charactering these nanoscale materials and their many chemical and physical interactions with the metal matrix, including real-time in-situ characterization of deformation mechanisms • Electron microscope images from premier studies enrich discussions on micro-mechanical modeling, interfacial design, mechanical behavior, and functional properties • A chapter is dedicated to the emergence of dual reinforcement composites that seek to enhance the efficacy of CNTs and lead to material properties by design. This book highlights seminal findings in CNT–MMC research and includes several tables listing processing methods, associated CNT states, and resulting properties in order to aid the next generation of researchers in advancing the science and engineering of CNT–MMC. In addition, a survey of the patent literature is presented in order to shed light on what the first wave of CNT–MMC commercialization may look like and the challenges that will
have to be overcome, both technologically and commercially. Carbon nanotubes are rolled up graphene sheets with a quasi-one-dimensional structure of nanometer-scale diameter. In these last twenty years, carbon nanotubes have attracted much attention from physicists, chemists, material scientists, and electronic device engineers because of their excellent structural, electronic, optical, chemical and mechanical properties. Carbon nanotube research, especially that aiming at industrial applications, is becoming more important. This book covers recent research topics regarding the physical, structural, chemical and electric properties on carbon nanotubes. All chapters were written by researchers who are active on the front lines. The chapters in this book will be helpful to many students, engineers and researchers working in the field of carbon nanotubes. Discovered in the twentieth century, carbon nanotubes (CNT) were an integral part of science and industry by the beginning of the twenty first century, revolutionizing chemistry, physics, and materials science. More recent advances in carbon nanotube production methods have resulted in a tremendous push to incorporate CNTs into polymer matrices. Although many advances have been made, two major obstacles continue unresolved: the enhancement of interfacial adhesion between CNTs and polymer matrix, and the improvement of dispersion of CNTs in polymers. Both substantial original contributors to the field, the authors present Carbon Nanotubes for Polymer Reinforcement, the first monograph on various conventional and innovative techniques to disperse and functionalize carbon nanotubes for polymer reinforcement, elegantly explaining the basic sciences and technologies involved in those processes. Topics covered include: Use of CNTs in fabricating novel polymer composites Principles and mechanisms behind CNT dispersion and functionalization Methods for the functionalization and dispersion of CNTs in polymer matrices Effects of CNTs on functional and mechanical properties of polymer composites Optimization of CNT/polymer nanocomposite fabrication Carbon Nanotubes for Polymer Reinforcement is a comprehensive treatment and critical review of the new class of polymer nanocomposites, and points to areas of future developments. Composites engineers, scientists, researchers, and students will find the basic knowledge and technical results contained herein informative and useful references for their work, whether for advanced research or for design and manufacture of such composites. Carbon Nanotube Reinforced Composites introduces a wide audience of engineers, scientists and product designers to this important and rapidly expanding class of high performance composites. Dr Loos provides readers with the scientific fundamentals of carbon nanotubes (CNTs), CNT composites and nanotechnology in a way which will enable them to understand the performance, capability and potential of the materials under discussion. He also investigates how CNT reinforcement can be used to enhance the mechanical, electrical and thermal properties of polymer composites. Production methods, processing technologies and applications are fully examined, with reference to relevant patents. Finally, health and safety issues related to the use of CNTs are investigated. Dr. Loos compares the theoretical expectations of using CNTs to the results obtained in labs, and explains the reasons for the discrepancy between theoretical and experimental results. This approach makes the book an essential reference and practical guide for engineers and product developers working with reinforced polymers – as well as researchers and students in polymer science, materials and nanotechnology. A wealth of applications information is included, taken from the wide range of industry sectors utilizing CNT reinforced composites, such as energy, coatings, defense, electronics, medical devices, and high performance sports equipment. Introduces a wide range of readers involved in plastics engineering, product design and manufacturing to the relevant topics in nano-science, nanotechnology, nanotubes and composites. Assesses effects of CNTs as reinforcing agents, both in a materials context and an applications setting. Focuses on applications aspects – performance, cost, health and safety, etc – for a wide range of industry sectors, e.g. energy, coatings, defense, electronics, medical devices, high performance sports equipment, etc. The main objective of this research was to explore whether combustion synthesis can be utilized for the synthesis of carbon nanotube reinforced materials. Both traditional powder combustion and solution combustion synthesis were used. A systematic methodology was employed to approach the known problems with carbon nanotube composite fabrication, namely,
dispersion and interfacial adhesion. First, using settling/aggregation–time observations it was determined that 1,2-dimethylformamide was the best solvent for dispersing all types of nanotubes at high concentrations. In addition, a dispersant compatible with reactive metal powders was determined. Second, electroless coating was applied to make to make Ni-coated SWNTs and MWNTs, for subsequent inclusion in reactive mixtures. The major portion of this research was focused on the investigation of in-situ synthesis and densification of Ni–Al–CNT mixtures to form NiAl1–CNT composites. The effect of particle size (micron to nano), mixing methodology, nanotube condition (uncoated, Ni-coated, SWNT, MWNT), and nanotube quantity on the synthesis of NiAl1–CNT composites were evaluated. It was determined that nanosized reactants lead to the best dispersion of nanotubes in reactive mixtures. Composites with the most improved properties (30% increase in Vickers microhardness over monolithic, and 94% higher than literature values for NiAl190) were synthesized from mixtures where the nanotubes were pre-dispersed with dispersant followed by mechanical mixing. Additions of more that 1.0–wt% consistently led to composites with poor properties regardless of nanotube type due to the lack of densification. The use of Ni–coated MWNTs led to a higher improvement in microhardness than uncoated MWNTs. This was attributed to the enhanced dispersion of the Ni–coated MWNTs (CT) within the reactant mixture. Raman spectroscopy and HRTEM clearly showed that carbon nanotubes survived the combustion synthesis; however, by the appearance of graphene sheets indicated some dissolution of carbon followed by precipitation. In addition, other condensed phase reacting systems exhibiting higher combustion temperatures and other reactive species, were used to determine the extension of such methodology for the synthesis of TiB2–CNT, TiC–TiB2–CNT, TiAl–CNT composites. Finally, solution combustion synthesis was conducted using metal–nitrate fuel mixtures to form Ni–, Cu–, Co– and Al2O3–CNT powders. For all the synthesized materials, the CNTs were shown to survive and no visible degradation was observed. Fiber composite materials are ideal engineered materials to carry loads and stresses in the fiber direction due to their high in-plane specific mechanical properties. However, premature failure due to low transverse mechanical properties constitutes a fundamental weakness of composites. A solution to this problem is being addressed through the creation of a nano-reinforced laminated composite (NRLC) materials where carbon nanotubes (CNTs) are grown on the surface of the fiber filaments to improve the matrix-dominated properties. The carbon nanotubes increase the effective diameter of the fiber and provide a much larger interface area for the polymeric matrix to wet the fiber. The objective of this thesis work is to numerically predict the elastic properties of these nano-reinforced fiber composites. Finite Element Method (FEM) is used to evaluate the effective mechanical properties employing a 2D and 3D cylindrical representative volume element (RVE) based on multiscale modeling approach. In continuum mechanics, perfect bonding is assumed between the carbon fiber and the polymer matrix and between the carbon nanotubes and the polymer matrix. In the multiscale modeling approach in this work, cohesive zone approach is employed to model the interface between carbon fiber and polymer matrix and between the CNTs and the polymer matrix. Traction-displacement plots obtained from molecular dynamics simulations are used to derive the constitutive properties of the cohesive zone material model used for CNT–Polymer interface. For NRLC, the cohesive zone material model properties are assumed based on the information found in the literature. Effective material constants are extracted from the solutions of the RVE for different loading cases using theory of elasticity of isotropic and transversely isotropic materials. Experimental mechanical characterization data is used for correlation and validation of numerical results. It is observed that the cohesive zone material model is capable of capturing the interface behavioral details and provides more realistic results for the mechanical response of composite materials. Experimental results show that the potential improvement in matrix-dominated properties of the NRLC suggested by the numerical study can be realized only with the availability of improved and sophisticated NRLC fabrication techniques. Carbon nanotubes (CNTs) possess the unique combination of extreme mechanical and physical properties at the level of the individual tube. They are often considered one of the best candidates for the reinforcement of the next generation of multifunctional composite materials. It is
essential to assemble the CNTs into macroscopic assemblies resembling traditional fiber-reinforced composites to begin to realize their potential and make them a serious candidate for commercial composite structures. This chapter presents a general introduction to aligned and high-volume fraction CNT composites and then explores two recent promising approaches for fabricating strong, stiff and multifunctional aligned CNT/polymer composite prepregs at satisfactory processing rates. One approach involves incorporating drawable superaligned CNT sheets into high-volume fraction composites through spraying or spray-stretching and winding. The other approach is based on directly shear pressing vertically aligned CNT arrays into horizontally aligned sheets with subsequent polymer infiltration. Both approaches produced CNT composite prepregs with desirable structural features and excellent properties. Aligned CNT/bismaleimide composites produced by stretch winding exhibited a combined tensile strength and elastic modulus exceeding carbon fiber composites. The exceptional mechanical performance coupled with unique electrical and thermal properties makes these materials promising for a wide range of applications, such as multifunctional composite structures, lightweight and flexible conductors, thermal interface materials, and sensors. Industrial Applications of Carbon Nanotubes covers the current applications of carbon nanotubes in various industry sectors, from the military to visual display products, and energy harvesting and storage. It also assesses the opportunities and challenges for increased commercialization and manufacturing of carbon nanotubes in the years ahead. Real-life case studies illustrate how carbon nanotubes are used in each industry sector covered, providing a valuable resource for scientists and engineers who are involved and/or interested in carbon nanotubes in both academia and industry. The book serves as a comprehensive guide to the varied uses of carbon nanotubes for specialists in many related fields, including chemistry, physics, biology, and textiles. Explains how carbon nanotubes can be used to improve the efficiency and performance of industrial products. Includes real-life case studies to illustrate how carbon nanotubes have been successfully employed. Explores how carbon nanotubes could be mass-manufactured in the future, and outlines the challenges that need to be overcome. In this book, meshes and networks formed out of multiwalled carbon nanotubes are investigated and analyzed, including their use in niche applications such as electro-optic devices, advanced mechanical, thermal and electrical property enhancement, and gene editing. Different properties of multiwalled carbon nanotubes, including random network formation, ordering the meshes and networks by mechanical agitation and application of an external field, using crystallization and cross-linking induced phase separation in homopolymers-CNT composites are discussed with theoretical analysis. The book is aimed at researchers and graduate students in Electrical Engineering; Materials Science and Engineering; Chemical Engineering and Nanotechnology, Electronic circuit design, manufacturing, and characterization. This discovery of carbon nanotubes (CNT) three decades ago ushered in the technological era of nanotechnology. Among the most widely studied areas of CNT research is their use as structural reinforcements in composites. This book describes the development of CNT reinforced metal matrix composites (CNT-MMCs) over the last two decades. The field of CNT-MMCs is abundant in fundamental science, rich in engineering challenges and innovations and ripe for technological maturation and commercialization. The authors have sought to present the current state of the art in CNT-MMC technology from their synthesis to their myriad potential end-use applications. Specifically, topics explored include: • Advantages, limitations, and evolution of processing techniques used to synthesize and fabricate CNT-MMCs • Emphasizes dispersion techniques of CNTs in metallic systems, a key challenge to the successful and widespread implementation of CNT-MMCs. Methods for quantification and improved control of CNT distributions are presented • Methods for quantification and improved control of CNT distributions are presented • Characterization techniques uniquely suited for characterizing these nanoscale materials and their many chemical and physical interactions with the metal matrix, including real-time in-situ characterization of deformation mechanisms • Electron microscope images from premier studies enrich discussions on micro-mechanical modeling, interfacial design, mechanical behavior, and functional properties • A chapter is dedicated to the emergence of dual reinforcement composites that seek to enhance the efficacy of CNTs
and lead to material properties by design. This book highlights seminal findings in CNT-MMC research and includes several tables listing processing methods, associated CNT states, and resulting properties in order to aid the next generation of researchers in advancing the science and engineering of CNT-MMCs. In addition, a survey of the patent literature is presented in order to shed light on what the first wave of CNT-MMC commercialization may look like and the challenges that will have to be overcome, both technologically and commercially. The impressive mechanical properties of carbon fibre reinforced polymer (CFRP) have stimulated research interest in the application of CFRP for the retrofitting and strengthening of ageing infrastructures. However, some obstacles such as debonding and the low shear strength of the bond, particularly at temperature about the glass transition temperature (Tg) of bond adhesive, limit the use of CFRP with steel structures. Nanofillers such as carbon nanotubes (CNTs) have the potential to improve the mechanical and thermo-mechanical properties of epoxy resin systems for this purpose. The objectives of the present work were thus threefold: (1) to understand the mechanical properties of CNTs via buckling analysis using molecular dynamics simulations, (2) to fabricate and characterize CNT reinforced epoxy composites to improve their mechanical and thermo-mechanical properties, and investigating the effect of ultrasonication energy, CNT geometry, dispersant type, and type of epoxy on the final properties, and (3) to apply CNT reinforced epoxy resins as structural adhesives in CFRP strengthened steel structures subjected to moderately elevated temperatures.

The results show that the compression load capacity of short multi-walled CNTs (MWCNTs) was greater than that of long MWCNTs. It was observed that the variation of the buckling strain of short MWCNTs was inversely proportional to the number of nanotube walls. For slender MWCNTs, the buckling strains fluctuated as the number of walls increased. The strain increased for beam-like buckling mode, decreased for shell-like buckling mode and was approximately constant for shell-beam-like buckling mode. Increase in the length of MWCNT also led to a significant decrease of the buckling strain for short MWCNTs. However, chirality had no significant effect on the buckling strain of MWCNTs, nor did it alter the buckling mode of short MWCNTs. To obtain effective dispersion of CNTs in an epoxy matrix, high shear mixing, ultrasonication treatments and surfactants were found to be essential. It was shown that it is important to use a set of compatible key parameters such as sufficient sonication energy, a strong dispersant, together with the appropriate CNTs. The results show that using ductile epoxy with 3 wt.% CNT masterbatch could enhance Young’s modulus by 20%, tensile strength by 30%, flexural strength by 15%, and Tg by 34% of neat epoxy. The degree of CNT dispersion is not only a matter of the copolymer surfactant concentration; the copolymer adsorption morphology on the surface of CNTs also plays a role. Three adsorption morphologies, i.e. random, hemimicelle, and cylindrical morphology, of BYK 9076 copolymer on the CNT surface were observed at different copolymer/CNT ratios. It was found that hemimicelle morphology could prevent the agglomeration of CNTs when CNT concentration increased up to 8.7 mg/ml, whereas a cylindrical morphology was more efficient and stable in providing dispersion of a higher concentration of CNTs. It was found that the failure mode in both double strap joints with neat epoxy and/or CNT-epoxy was a combination of steel-adhesive interface failure, cohesive failure, epoxy-CFRP interface failure and CFRP delamination. Joints bonded with CNT-epoxy adhesive possessed an effective bond length of about 60 mm, whereas the effective bond length of joints bonded with neat epoxy was about 70 mm. Increasing the test temperature caused a transition of failure mode from the epoxy-CFRP interface to the steel-epoxy interface and to the cohesive layer in joints with neat epoxy. The cohesive failure could be avoided in the joints with CNT-epoxy. Observations from scanning electron microscopy revealed that CNTs bridge the cracks in epoxy matrix, providing a reinforcing effect. Overall, CNT-epoxy resin systems can provide a significant increase (about two-fold) in bond strength at moderately elevated temperatures compared with neat epoxy. An experimental investigation was conducted to understand the non-destructive evaluation (NDE) capabilities of carbon nanotubes (CNTs) of several network architectures towards structural health monitoring (SHM). As heterogeneous composite structures become increasingly common in industry, detecting mechanical damage and damage accumulation becomes increasingly difficult as many modes of failure occur.
Where To Download Carbon Nanotube Reinforced Composites Cnt Polymer Science And Technology Pdl Handbook

below the external surface. Traditional SHM techniques may be time consuming and costly; however, CNTs are a unique material that shows promise as a strain or damage sensor. Three different laminate samples types with various CNT network architectures were tested in open-hole tension. Samples tested were quasiisotropic carbon fiber, carbon fiber prepreg with unidirectional knocked-down CNT surface patch, and fuzzy fiber reinforced plastic (FFRP) samples, which consist of radially grown CNTs on a woven ceramic fiber substrate. Mechanical load and electrical resistance were simultaneously measured using three different probes configurations with respect to the tensile direction that measured either surface or through thickness resistance changes. Measurements were taken near and away from the stress concentration. Results indicated that different CNT network architectures influenced the consistency and efficacy of indicating damage accumulation. Changes in electrical resistance correlated strongly with sample mechanical damage accumulation for unidirectional knocked-down CNTs, but had more consistent values and readings for the FFRP samples, indicating that CNT network architecture beyond the inherent piezoresistivity of the CNT heavily influences the NDE capabilities of using CNTs as strain or damage sensors. Results also suggest that CNT network architecture must be further optimized to achieve reliable NDE and SHM, and may depend on the desired application.

From the Foreword, written by legendary nano pioneer M. Meyyappan, Chief Scientist for Exploration Technology NASA Ames Research Center, Moffett Field, California, USA: "there is critical need for a book to summarize the status of the field but more importantly to lay out the principles behind the technology. This is what Professor Arvind Agarwal and his co-workers have done here." Carbon Nanotubes: Reinforced Metal Matrix Composites reflects the authors' desire to share the benefits of nanotechnology with the masses by developing metal matrix carbon nanotube (MM–CNT) composites for large-scale applications. Multiwall carbon nanotubes can now be produced on a large scale and at a significantly reduced cost. The book explores potential applications and applies the author's own research to highlight critical developmental issues for different MM–CNT composites—and then outline novel solutions. With this problem-solving approach, the book explores: Advantages, limitations, and the evolution of processing techniques used for MM–CNT composites Characterization techniques unique to the study of MM–CNT composites—and the limitations of these methods Existing research on different MM–CNT composites, presented in useful tables that include composition, processing method, quality of CNT dispersion, and properties The micro–mechanical strengthening that results from adding CNT The applicability of micro–mechanics models in MM–CNT composites Significance of chemical stability for carbon nanotubes in the metal matrix as a function of processing, and its impact on CNT/metal interface and mechanical properties Computational studies that have not been sufficiently covered although they are essential to research and development The critical issue of CNT dispersion in the metal matrix, as well as a unique way to quantify CNT distribution and subsequently improve control of the processing parameters for obtaining improved properties Carbon Nanotubes: Reinforced Metal Matrix Composites paints a vivid picture of scientific and application achievements in this field. Exploring the mechanisms through which CNTs are enhancing the properties of different metal–based composites, the authors provide a roadmap to help researchers develop MM–CNT composites and choose potential materials for use in emerging areas of technology. Carbon Nanotube–Reinforced Polymers: From Nanoscale to Macroscale addresses the advances in nanotechnology that have led to the development of a new class of composite materials known as CNT–reinforced polymers. The low density and high aspect ratio, together with their exceptional mechanical, electrical and thermal properties, render carbon nanotubes as a good reinforcing agent for composites. In addition, these simulation and modeling techniques play a significant role in characterizing their properties and understanding their mechanical behavior, and are thus discussed and demonstrated in this comprehensive book that presents the state–of–the–art research in the field of modeling, characterization and processing. The book separates the theoretical studies on the mechanical properties of CNTs and their composites into atomistic modeling and continuum mechanics–based approaches, including both analytical and numerical ones, along with multi–scale modeling techniques. Different efforts have been done in this field to address the mechanical
behavior of isolated CNTs and their composites by numerous researchers, signaling that this area of study is ongoing. Explains modeling approaches to carbon nanotubes, together with their application, strengths and limitations. Outlines the properties of different carbon nanotube-based composites, exploring how they are used in the mechanical and structural components. Analyzes the behavior of carbon nanotube-based composites in different conditions. This is a 1999 book on carbon nanotubes, one of the most exciting areas in materials chemistry. Understanding the properties of polymer carbon nanotube (CNT) composites is the key to these materials finding new applications in a wide range of industries, including but not limited to electronics, aerospace and biomedical/bioengineering. Polymer-carbon nanotube composites provides comprehensive and in-depth coverage of the preparation, characterization, properties and applications of these technologically interesting new materials. Part one covers the preparation and processing of composites of thermoplastics with CNTs, with chapters covering in-situ polymerization, melt processing and CNT surface treatment, as well as elastomer and thermoset CNT composites. Part two concentrates on properties and characterization, including chapters on the quantification of CNT dispersion using microscopy techniques, and on topics as diverse as thermal degradation of polymer/CNT composites, the use of rheology, Raman spectroscopy and multi-scale modelling to study polymer/CNT composites, and CNT toxicity. In part three, the applications of polymer/CNT composites are reviewed, with chapters on specific applications such as in fibres and cables, bioengineering applications and conductive polymer CNT composites for sensing. With its distinguished editors and international team of contributors, Polymer-carbon nanotube composites is an essential reference for scientists, engineers and designers in high-tech industry and academia with an interest in polymer nanotechnology and nanocomposites. Provides comprehensive and in-depth coverage of the preparation, characterization and properties of these technologically interesting new materials. Reviews the preparation and processing of composites of thermoplastics with CNTs, covering in-situ polymerization, melt processing and CNT surface treatment. Explores applications of polymer/CNT composites such as in fibres and cables, bioengineering applications and conductive polymer CNT composites for sensing.

Copyright code: 878cc5f3fb63f20da0d78bf30078cebb